
Programmable graphics pipeline

Adapted from
Suresh Venkatasubramanian UPenn

The evolution of the pipeline

Elements of the graphics pipeline:

1. A scene description: vertices,
triangles, colors, lighting

2. Transformations that map the
scene to a camera viewpoint

3. “Effects”: texturing, shadow
mapping, lighting calculations

4. Rasterizing: converting geometry
into pixels

5. Pixel processing: depth tests,
stencil tests, and other per-pixel
operations.

Parameters controlling design
of the pipeline:

1. Where is the boundary
between CPU and GPU ?

2. What transfer method is used ?

3. What resources are provided
at each step ?

4. What units can access which
GPU memory elements ?

Generation I: 3dfx Voodoo (1996)

http://accelenation.com/?ac.id.123.2

• One of the first true 3D game cards

• Worked by supplementing standard 2D
video card.

• Did not do vertex transformations:
these were done in the CPU

• Did do texture mapping, z-buffering.

Primitive
Assembly

Primitive
Assembly

Vertex
Transforms

Vertex
Transforms

Frame
Buffer

Frame
Buffer

Raster
Operations

Rasterization
and

Interpolation

GPUCPU PCI

Vertex
Transforms

Vertex
Transforms

Generation II: GeForce/Radeon 7500 (1998)

http://accelenation.com/?ac.id.123.5

• Main innovation: shifting the
transformation and lighting
calculations to the GPU

• Allowed multi-texturing: giving bump
maps, light maps, and others..

• Faster AGP bus instead of PCI

Primitive
Assembly

Primitive
Assembly

Frame
Buffer

Frame
Buffer

Raster
Operations

Rasterization
and

Interpolation

GPUAGP

Vertex
Transforms

Vertex
Transforms

Generation III: GeForce3/Radeon 8500(2001)

http://accelenation.com/?ac.id.123.7

• For the first time, allowed limited
amount of programmability in the
vertex pipeline

• Also allowed volume texturing and
multi-sampling (for antialiasing)

Primitive
Assembly

Primitive
Assembly

Frame
Buffer

Frame
Buffer

Raster
Operations

Rasterization
and

Interpolation

GPU
AGP

Small vertex
shaders

Small vertex
shaders

Vertex
Transforms

Vertex
Transforms

Generation IV: Radeon 9700/GeForce FX
(2002)

• This generation is the first generation
of fully-programmable graphics cards

• Different versions have different
resource limits on fragment/vertex
programs

http://accelenation.com/?ac.id.123.8

Primitive
Assembly

Primitive
Assembly

Frame
Buffer

Frame
Buffer

Raster
Operations

Rasterization
and

Interpolation

AGP
Programmable
Vertex shader

Programmable
Vertex shader

Programmable
Fragment
Processor

Programmable
Fragment
Processor

Generation IV.V: GeForce6/X800 (2004)

Not exactly a quantum leap, but…
• Simultaneous rendering to multiple buffers
• True conditionals and loops
• Higher precision throughput in the pipeline (64

bits end-to-end, compared to 32 bits earlier.)
• PCIe bus
• More memory/program length/texture accesses

New Generation: CUDA
GeForce8800/Telsa (2007)

• “Compute Unified Device Architecture”
• General purpose programming model

– User kicks off batches of threads on the GPU
– GPU = dedicated super-threaded, massively data parallel co-

processor
• Targeted software stack

– Compute oriented drivers, language, and tools
• Driver for loading computation programs into GPU

– Standalone Driver - Optimized for computation
– Interface designed for compute - graphics free API
– Data sharing with OpenGL buffer objects
– Guaranteed maximum download & readback speeds
– Explicit GPU memory management

Vertex
Index

Stream

3D API
Commands

Assembled
Primitives

Pixel
Updates

Pixel
Location
Stream

Programmable
Fragment
Processor

Programmable
Fragment
Processor

T
ra

n
sf

o
rm

ed
V
er

ti
ce

s

Programmable
Vertex

Processor

Programmable
Vertex

Processor

GPU
Front End

GPU
Front End

Primitive
Assembly

Primitive
Assembly

Frame
Buffer

Frame
Buffer

Raster
Operations

Rasterization
and

Interpolation

3D API:
OpenGL or
Direct3D

3D API:
OpenGL or
Direct3D

3D
Application

Or Game

3D
Application

Or Game

P
re-tran

sfo
rm

ed
V
ertices

P
re-tran

sfo
rm

ed
Frag

m
en

ts

T
ra

n
sf

o
rm

ed
Fr

ag
m

en
ts

G
P
U

C
o
m

m
an

d
 &

D
ata S

tream

CPU-GPU Boundary (AGP/PCIe)

Fixed-function pipeline

A closer look at the fixed-function
pipeline

Pipeline Input

(x, y, z)

(r, g, b,a)

(Nx,Ny,Nz)

(tx, ty,[tz])

(tx, ty)

(tx, ty)

Vertex Image F(x,y) = (r,g,b,a)

Material
properties*

ModelView Transformation

• Vertices mapped from object space to world
space

• M = model transformation (scene)
• V = view transformation (camera)

X’

Y’

Z’

W’

X

Y

Z

1

M * V *

Each matrix transform
is applied to each
vertex in the input
stream. Think of this
as a kernel operator.

Lighting

Lighting information is combined with normals
and other parameters at each vertex in order to
create new colors.

Color(v) = emissive + ambient + diffuse +
specular

Each term in the right hand side is a function of
the vertex color, position, normal and material
properties.

Clipping/Projection/Viewport(3D)

• More matrix transformations that operate on a
vertex to transform it into the viewport space.

• Note that a vertex may be eliminated from the
input stream (if it is clipped).

• The viewport is two-dimensional: however,
vertex z-value is retained for depth testing.

Fragment attributes:

(r,g,b,a)

(x,y,z,w)

(tx,ty), …

Rasterizing+Interpolation

• All primitives are now converted to fragments.
• Data type change ! Vertices to fragments

Texture coordinates are interpolated from
texture coordinates of vertices.

This gives us a linear interpolation operator
for free. VERY USEFUL !

Texture Interpolation

Texture map
s

t

Triangle in
world space

(x1, y1),
(s1, t1)

(x2, y2), (s2, t2)

3
13

1
1

13

11 s
yy
yys

yy
yysR ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−=
3

23

2
2

23

21 s
yy
yys

yy
yysL ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−=

R
LR

L
L

LR

L s
xx
xxs

xx
xxs ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−= 1

Per-fragment operations

• The rasterizer produces a stream of fragments.
• Each fragment undergoes a series of tests with

increasing complexity.

Test 1: Scissor

If (fragment lies in fixed rectangle) let it pass else discard it

Test 2: Alpha

If(fragment.a >= <constant>) let it pass else discard it.

Per-fragment operations

• Stencil test: S(x, y) is stencil buffer value for
fragment with coordinates (x,y)

• If f(S(x,y)), let pixel pass else kill it. Update S(x,
y) conditionally depending on f(S(x,y)) and
g(D(x,y)).

• Depth test: D(x, y) is depth buffer value.
• If g(D(x,y)) let pixel pass else kill it. Update

D(x,y) conditionally.

Per-fragment operations

• Stencil and depth tests are the only tests that
can change the state of internal storage (stencil
buffer, depth buffer). This is very important.

• Unfortunately, stencil and depth buffers have
lower precision (8, 24 bits resp.)

Post-processing

• Blending: pixels are accumulated into final
framebuffer storage

new-val = old-val op pixel-value
If op is +, we can sum all the (say) red
components of pixels that pass all tests.

Problem: In generation<= IV, blending can only be
done in 8-bit channels (the channels sent to the
video card); precision is limited.

